
IBM Coding Questions with Answers 2024.

1. How to find the maximum subarray sum in an array of integers.

def max_subarray_sum(a):

 max_so_far = 0

max_ending_here = 0

for i in range(len(a)):

 max_ending_here = max(0, max_ending_here + a[i])

max_so_far = max(max_so_far, max_ending_here)

return max_so_far

To find the maximum subarray sum in an array of integers we have tackled two main

variables which are : max_so_far and max_ending_here. Both the elements represent the

maximum subarray that has been going and the sum that ends at the current index. The

algorithm here stats with initializing max_so_far to 0 then iterates keeping track of

max_ending_here. After the iterating process is completed it sends the value of

max_so_far.

2. A simple method to sort an array of integers in ascending and descending order

Python

def bubble_sort(a):

 for i in range(len(a) - 1):

 for j in range(len(a) - i - 1):

 if a[j] > a[j + 1]:

 a[j], a[j + 1] = a[j + 1], a[j]

The algorithm here works by consistently comparing the adjacent components which are

present in the array and exchanging them to get them in the right order. The algorithm starts

and iterates over it, comparing each component to its next one. If the present component is

greater than its side one the algorithm exchanges them. The algorithm keeps repeating again

and again until it's sorted.

3. The easiest way to find the shortest path between two nodes in a graph

Python

def dijkstra(graph, source):

 distances = {}

 for node in graph:

 distances[node] = float('inf')

 distances[source] = 0

 queue = [source]

 while queue:

 current_node = queue.pop(0)

 for neighbor in graph[current_node]:

 new_distance = distances[current_node] +

graph[current_node][neighbor]

 if new_distance < distances[neighbor]:

 distances[neighbor] = new_distance

 queue.append(neighbor)

 return distances

A priority queue is the main element in this function which helps us keep track of distances

from sources to other nodes which are present in the graph. The algorithm adds a source node

to the priority queue and the priority queue is distinguished by the distances of the nodes in

the queue. Shortest distance of node from source node will be present at the front of the

queue. The function here eliminates when the priority queue is emptying which tells us nodes

present in the graph have been traveled and their distances to the source node have been

calculated.

4. The space complexity of a binary search tree

The space complexity of a binary search tree is O(n), where n is the number of nodes in the

tree. This is because a binary search tree must store each node in the tree.

5. What's the time complexity of inserting an element into a Doubly linked list?

class

Node:

def

__init__(self, data):

self.data = data

 self.next = None

 self.prev = None

class

DoublyLinkedList:

def

__init__(self):

 self.head = None

 self.tail = None

def

insert_at_beginning(self, data):

 new_node = Node(data)

 new_node.next = self.head

 self.head = new_node

 if self.tail is

None:

 self.tail = new_node

 else:

 self.head.prev = new_node

 def insert_at_end(self, data):

 new_node = Node(data)

 new_node.prev = self.tail

 self.tail = new_node

 if self.head is None:

 self.head = new_node

 else:

 self.tail.next = new_node

 def insert_at(self, index, data):

 if index == 0:

 self.insert_at_beginning(data)

 elif index == len(self):

 self.insert_at_end(data)

 else:

 new_node = Node(data)

 current_node = self.head

 for i in

range(index - 1):

 current_node = current_node.next

 new_node.next = current_node.next

 current_node.next.prev = new_node

 new_node.prev = current_node

 current_node.next = new_node

For this algorithm, we have inserted a new node at the start of the doubly linked list and at the

end we've done the same. To get the index we insert a new node for the specified index. For

the time complexity at the beginning and end we've inserted O(1)

and at index O(n) where n is signified as the index.

6. There's a binary tree; check if it is a binary search tree or not

def is_bst(root):

if root is

None:

 return

True

if root.left is

not

None

and root.left.data > root.data:

 return

False

if root.right is

not

None

and root.right.data < root.data:

 return

False

 return is_bst(root.left) and is_bst(root.right)

For the binary search tree check system, we've defined a function at first to check if it's a

binary search tree by recursively validating node values.

7. Given a linked list, determine if it has a cycle

def has_cycle(head):

 slow = head

 fast = head

 while fast is not None and fast.next is not None:

 slow = slow.next

 fast = fast.next.next

 if slow == fast:

 return True

 return False

For this code what we can do is create a function using the well-known Floyd's Tortoise and

Hare algorithm to check if a linked list has a cycle or not.

8. There's a string; determine if it is a palindrome or not.

def is_palindrome(string):

 string = string.lower()

 left = 0

 right = len(string) - 1

 while left < right:

 if string[left] != string[right]:

 return False

 left += 1

 right -= 1

 return True

Here we have implemented a function is_palindrome to check if the string is a palindrome or

not. By using left and right pointers to compare the characters from start and end to the string

moving towards the center.

9. Given an array of integers, find the two numbers that add up to a given target

sum.

def find_two_numbers_with_sum(array, target_sum):

 seen = set()

 for number in array:

 complement = target_sum - number

 if complement in seen:

 return (number, complement)

 seen.add(number)

 return None

In this function, we've used find_two_numbers_with_sum element to find two numbers in an

array that gives us a target addition. It uses a set to track numbers which are present while

iterating from the array.

10. How to find the kth largest element in an array in linear time gives a brief

explanation.

def quickselect(array, k):

 if len(array) == 1:

 return array[0]

 pivot = array[random.randint(0, len(array) - 1)]

 less_than_pivot = []

 greater_than_pivot = []

 for element in array:

 if element < pivot:

 less_than_pivot.append(element)

 elif element > pivot:

 greater_than_pivot.append(element)

 if k <= len(less_than_pivot):

 return quickselect(less_than_pivot, k)

 elif k > len(less_than_pivot) + 1:

 return quickselect(greater_than_pivot, k - len(less_than_pivot) - 1)

 else:

 return pivot

The above code uses the QuickSelect algorithm which helps us to find the k-th smallest

element in an unordered list.

Base Case, Pivot Selection, Partitioning, and Recursion are the four main elements which we

use in this function to get the desired results.

11. How do you check if a string is a palindrome or not? Write a code and explain.

def is_palindrome(string):

 string = string.lower()

 reversed_string = string[::-1]

 return string == reversed_string

Here the algorithm is pretty easy as we've converted the input string to lowercase and then

reverse the string and given a command to Returns True if the original string which is added

is equal to its reverse, indicating a palindrome.

12. Write a function to find the factorial of a number.

def factorial(number):

 if number == 0:

 return 1

 return number * factorial(number - 1)

For the factorial function we've used recursion to calculate the factorial of the number. The

base case here is factorial(0) returns 1 and the recursive case here multiplies the number by

the factorial of - 1.

13. Write a code to find out the greatest common divisor (GCD) of two numbers.

def gcd(a, b):

 while b != 0:

 a, b = b, a % b

 return a

To get the Greatest Common Divisor we've used the Euclidean Algorithm mixed with a while

loop. The algorithm then Swaps and calculates the remainder until the number at the second

position becomes zero. Then it returns the answer

14. How you reverse a linked list.

def reverse_linked_list(head):

 if head is None or head.next is None:

 return head

 new_head = None

 while head is not None:

 next = head.next

 head.next = new_head

 new_head = head

 head = next

 return new_head

For the reverse linked list we Iteratively reverse a linked list by adjusting its given pointers.

We Use three pointers head, new_head, and next in the program to reverse the links.

15. Write a function to clone a linked list.

def clone_linked_list(head):

 if head is None:

 return None

 new_head = Node(head.data)

 current = head

 new_current = new_head

 while current.next is not None:

 new_node = Node(current.next.data)

 new_current.next = new_node

 new_current = new_node

 current = current.next

 return new_head

For a Clone Linked List we Create a new linked list with mixing nodes which have the same

data as the original linked list present. Then it Iterates through the original list, making new

nodes for each.

Also Read :

Microsoft Explore Internship

Google Internship 2024

16. Write a function to find the lowest common ancestor of two nodes in a binary

tree.

def lowest_common_ancestor(root, p, q):

 if root is None or root == p or root == q:

 return root

 left = lowest_common_ancestor(root.left, p, q)

 right = lowest_common_ancestor(root.right, p, q)

 if left and right:

 return root

 return left or right

For this code to get the Lowest Common Ancestor in a Binary Tree we Recursively find the

lowest common ancestor of two nodes in a binary tree. Then it returns the root when it comes

forward to a node and mixes the results from left and right subtrees.

17. Write a code and explain the easiest way to check if a binary tree is balanced or

not.

def is_balanced(root):

 if root is None:

 return True

 left_height = height(root.left)

 right_height = height(root.right)

 return abs(left_height - right_height) <= 1 and is_balanced(root.left)

and is_balanced(root.right)

For the Balanced Binary Tree Check algorithm we first Recursively checks if a binary tree is

balanced or not. Then we compare the heights of the left and right subtrees and make sure

that their difference is at most 1.

https://ccodelearner.com/blog/microsoft-explore-internship-2024/
https://ccodelearner.com/blog/google-internship-2024-2025/

18. Write a function to find the k largest elements in an array of integers.

def find_k_largest_elements(array, k):

 """

 Args:

 array: A list of integers.

 k: The number of largest elements to find.

 Returns:

 A list of the k largest elements in the array, in descending order.

 """

For the largest element in the array a function header is given and it would involve sorting the

array and returning the elements.

19. How you delete a node from a linked list.

def delete_node(head, node):

 """

 Deletes a node from a linked list.

 Args:

 head: The head of the linked list.

 node: The node to delete.

 Returns:

 The head of the linked list after the node has been deleted.

 """

 if node == head:

 head = head.next

 return head

 previous_node = None

 current_node = head

 while current_node != node:

 previous_node = current_node

 current_node = current_node.next

 previous_node.next = node.next

First up if the node which is to be deleted is head then we update the head to the next node

and return to the new head. If it's not head we traverse the list until we find the node to

delete. The next pointer will be updated of the previous node to skip the node which is to be

deleted in the code.

20. Given a graph, check if it is bipartite.

def is_bipartite(graph):

 colors = {}

 for node in graph:

 if node not in colors:

 colors[node] = 0

 if colors[node] == 1:

 for neighbor in graph[node]:

 if neighbor in colors and colors[neighbor] == 1:

 return False

 for neighbor in graph[node]:

 if neighbor not in colors:

 colors[neighbor] = 1 - colors[node]

 return True

The color nodes of a graph with two colors is 0 and 1 and adjacent nodes have very different

colors. Here we use a dictionary which is of colors to store the color of every node that is

present to have different colors. By checking if the coloring is valid by ensuring no adjacent

nodes have the same color in the code. Then we Return True if the graph is bipartite and

False is not.

	IBM Coding Questions with Answers 2024.

